organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

A new pseudopolymorph of hexakis-(4-cyanophenyl)benzene

Eric Gagnon, Kenneth E. Maly, Thierry Maris* and James D. Wuest

Département de Chimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7 Correspondence e-mail: thierry.maris@umontreal.ca

Received 19 July 2006 Accepted 3 November 2006 Online 12 December 2006

The title compound (systematic name: benzene-4,4',4'',4''',4'''',4'''',4'''',4'''',4'''',4''''',exaylhexabenzonitrile dichloromethane disolvate), $C_{48}H_{24}N_6\cdot 2CH_2Cl_2$, crystallizes as an inclusion compound during the slow diffusion of methanol into a solution of hexakis(4-cyanophenyl)benzene in CH_2Cl_2 . The hexakis(4-cyanophenyl)benzene molecule lies on an axis of twofold rotation in the space group *Pbcn*. Weak $C-H\cdots N$ interactions between hexakis(4-cyanophenyl)benzene molecules define an open network with space for including guests. The resulting structure is a new pseudopolymorph of hexakis(4-cyanophenyl)benzene. The eight known pseudopolymorphs have few shared architectural features, in part because none of the intermolecular interactions that are present plays a dominant role or forces neighboring molecules to assume particular relative orientations.

Comment

Networks of hydrogen bonds continue to be used extensively by crystal engineers to help maintain the integrity of crystals and to position their constituent molecules predictably (Wuest, 2005). Hydrogen bonds offer the advantages of strength and directionality, leading to the formation of robust networks that frequently define cavities or channels for the inclusion of guests. Crystal engineers have also explored the potential of weaker intermolecular interactions, which can exhibit some of the geometric, structural and spectroscopic characteristics of hydrogen bonds (Desiraju, 2002). For example, we recently reported a study of structures maintained in part by weak C-H···N interactions involving the nitrile groups of hexakis(4-cyanophenyl)benzene, (I) (Maly et al., 2006). Despite having a well defined molecular geometry imposed by the hexaphenylbenzene core, compound (I) crystallized under seven different sets of conditions to give inclusion compounds with widely different structures. Although networks maintained by C-H···N interactions were observed in all of these pseudopolymorphs, the particular geometries of the interactions varied widely and the

overall structures proved to depend critically on the choice of solvent. These observations underscore the difficulty of using $C-H\cdots N$ interactions to engineer crystals with predictable structural features.

This conclusion has now been reinforced by the analysis of the structure of a new pseudopolymorph obtained by crystallizing compound (I) from CH₃OH–CH₂Cl₂ as the dichloromethane disolvate, (II). In this structure, the molecule of (I) lies on an axis of twofold rotation directed through atoms C1 and C4 in the plane of the inner benzene ring composed of atoms C1–C4/C3ⁱ/C2ⁱ [symmetry code: (i) -x, y,

Figure 1

A view of the structure of (II), showing the atom-numbering scheme of the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level. Only one part of the disordered solvent molecules is shown. The unlabeled parts of the molecules are related by the symmetry operation $(-x, y, -z + \frac{1}{2})$.

 $-z + \frac{1}{2}$]. The hexaphenylbenzene core of compound (II) has a chiral propeller conformation, with torsion angles in the range 61.97 (4)–73.37 (4) $^{\circ}$ (Fig. 1). Similar conformations have been noted in other pseudopolymorphs of compound (I) (Maly et al., 2006).

The observed structure contains equal numbers of each enantiomer. The disc-like shape of hexaphenylbenzene and its derivatives normally favors structures in which the molecules lie parallel and define distinct layers. For example, hexaphenylbenzene itself (Bart, 1968), its inclusion compound with anisole (Larson et al., 1990), and its derivatives substituted in the para position by 4-(carboxyphenyl)ethynyl (Kobayashi et al., 2005), iodo (Kobayashi et al., 2005), carboxy (Kobayashi et al., 2000), trifluorovinyloxy (Spraul et al., 2004), hydroxy (Kobayashi et al., 1999), ethynyl (Constable et al., 2000), -CONH₂ (Kobayashi et al., 2003) and -CN (Maly et al., 2006) all have crystal structures in which the molecules are roughly coplanar. In contrast, the new polymorph of (I) reported here crystallizes to form a structure in which the molecules occupy two sets of planes, which intersect along the b axis at an angle of 68.29 (3)°. The only previously reported non-coplanar architecture was obtained when hexakis(4-carbamoylphenyl)benzene was crystallized under hydrothermal conditions (Kobayashi et al., 2003).

In the structure of (II), each molecule of (I) is surrounded by 14 neighbors, with ten neighbors linked to the central molecule by a total of 12 C-H···N interactions involving $H \cdots N$ distances less than 2.80 Å and $C - H \cdots N$ angles greater than 90° (Fig. 2 and Table 1). Four additional neighbors have $C-H\cdots N$ interactions that are only slightly longer $[H\cdots N]$ distances of 2.85 (1) Å] (Fig. 2). The resulting network defines spaces for including partially disordered dichloromethane molecules, which engage in van der Waals interactions and

Figure 2

View of a molecule of (I) (black) in compound (II), showing the neighboring molecules that are linked to it by C-H...N interactions (broken lines), with H···N distances of less than 2.80 A (dark gray) and H····N distances of 2.85 (1) Å (light gray). H atoms not involved in hydrogen bonding have been omitted for clarity.

 $C-H \cdots N$ interactions with nearby molecules of (I). Specifically, atom Cl1 is in close contact [3.324 (8) Å] with the centroid (Cg1) of the inner benzene ring of the molecule at (x + 1, y, z), with a C29-Cl1...Cg1 angle of 163.6 (3)°. Approximately 21% of the volume of the crystal is accessible to guests, as measured by standard methods (Spek, 2003). This value falls within the wide range of percentages (15–58%) found in the other seven known pseudopolymorphs of (I). It is interesting to note that compound (I) crystallizes from pure methanol as an inclusion compound of composition (I)·2CH₃OH (Maly et al., 2006), whereas crystallization from CH₃OH-CH₂Cl₂ produces an inclusion compound containing only CH₂Cl₂, which is presumably a preferred guest.

Together, these observations confirm that nitrile groups tend to engage in $C-H \cdots N$ interactions and can help direct the construction of open molecular networks. However, the use of these interactions in crystal engineering is limited by their weakness and lack of clear directional preferences, which lead, in the case of (I), to crystallization as multiple pseudopolymorphs with very diverse structures.

Experimental

Hexakis(4-cyanophenyl)benzene, (I), was synthesized according to the reported method of Maly et al. (2006). Crystals were grown by placing a solution of compound (I) in CH_2Cl_2 (0.1 M, 2 ml) at the bottom of a test tube, then carefully covering it with successive layers composed of pure CH2Cl2 (1 ml), a 1:1 mixture of CH2Cl2 and CH₃OH (1 ml), and finally pure CH₃OH (2 ml). The test tube was sealed tightly and left undisturbed. Crystals of (II) appeared after several days.

Crystal data

-	
$C_{48}H_{24}N_6 \cdot 2CH_2Cl_2$	Z = 4
$M_r = 854.58$	$D_x = 1.311 \text{ Mg m}^{-3}$
Orthorhombic, Pbcn	Cu $K\alpha$ radiation
a = 11.0921 (3) Å	$\mu = 2.82 \text{ mm}^{-1}$
b = 19.3442 (3) Å	T = 150 (2) K
c = 20.1742 (4) Å	Block, colorless
V = 4328.73 (16) Å ³	0.15 \times 0.08 \times 0.07 mm
Data collection	
Bruker SMART 6000	57445 measured reflections
diffractometer	3865 independent reflections
ω scans	3494 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.051$
(SADABS; Sheldrick, 2001)	$\theta_{\rm max} = 68.2^{\circ}$

Refinement

 $T_{\rm min}=0.700,\ T_{\rm max}=0.850$

	TT / / / /
Rennement on F	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.058$	$w = 1/[\sigma^2(F_0^2) + (0.119P)^2]$
$wR(F^2) = 0.138$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
3865 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
286 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

H atoms were placed in idealized positions, with C-H distances in the range 0.95-0.99 Å, and refined using a riding model, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eg}({\rm C}).$

The dichloromethane solvent molecule was found to be disordered over two sites. The first molecule (C29, Cl1 and Cl2) was refined with restraints on the C-Cl distances and atomic displacement parameters by the use of SADI and DELU instructions in SHELXL97

Table 1	
Hydrogen-bond geometry (Å, °)).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C19-H19\cdots N2^{i}$	0.95	2.65	3.5076 (17)	151
$C7 - H7 \cdot \cdot \cdot N2^{ii}$	0.95	2.61	3.5355 (16)	165
$C21 - H21 \cdots N3^{iii}$	0.95	2.69	3.320 (2)	124
$C29-H29B\cdots N4^{iv}$	0.99	2.59	3.288 (9)	127

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (iv) $x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

(Sheldrick, 1997). The second part of the disordered dichloromethane molecule (C30, Cl3 and Cl4) was refined to be similar to the first part by the use of SAME and EADP instructions in *SHELXL97*. With these restraints, the occupancy factors converged to 0.5312 (11) and 0.4688 (11).

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004) and *publCIF* (Westrip, 2006).

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC), the Ministère de l'Éducation du Québec, the Canada Foundation for Innovation, the Université de Montréal and the Canada Research Chairs Program for financial support. In addition, we thank Professor Jurgen Sygusch for providing access to a Bruker SMART 6000 CCD diffractometer equipped with a rotating anode. Supplementary data for this paper are available from the IUCr electronic archives (Reference: GZ3032). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bart, J. C. J. (1968). Acta Cryst. B24, 1277-1287.
- Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.
- Constable, E. C., Eich, O., Fenske, D., Housecroft, C. E. & Johnston, L. A. (2000). *Chem. Eur. J.* 6, 4364–4370.
- Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.
- Kobayashi, K., Kobayashi, N., Ikuta, M., Therrien, B., Sakamoto, S. & Yamaguchi, K. (2005). J. Org. Chem. **70**, 749–752.
- Kobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035–3045.
- Kobayashi, K., Shirasaka, T., Horn, E. & Furukawa, N. (2000). Tetrahedron Lett. 41, 89–93.
- Kobayashi, K., Shirasaka, T., Sato, A., Horn, E. & Furukawa, N. (1999). Angew. Chem. Int. Ed. 38, 3483–3486.
- Larson, E. M., Von Dreele, R. B., Hanson, P. & Gust, J. D. (1990). Acta Cryst. C46, 784–788.
- Maly, K. E., Maris, T., Gagnon, E. & Wuest, J. D. (2006). Cryst. Growth Des. 6, 461–466.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Spraul, B. K., Suresh, S., Glaser, S., Perahia, D., Ballato, J. & Smith, D. W. Jr (2004). J. Am. Chem. Soc. 126, 12772–12773.
- Westrip, S. P. (2006). PublCIF. In preparation.
- Wuest, J. D. (2005). Chem. Commun. pp. 5830-5837.